CONTEST \#5.

SOLUTIONS

5-1. 6 Solve $3 S+5 L=72$ with $S+L=20$ to obtain $3(20-L)+5 L=72 \rightarrow 2 L+60=72$, so $L=6$.
5-2. 10201 Using laws of exponents, $(\sqrt{7}-\sqrt{2})^{4}=\left((\sqrt{7}-\sqrt{2})^{2}\right)^{2}$, which may be rewritten as $(9-2 \sqrt{14})^{2}$, which is $9^{2}+(2 \sqrt{14})^{2}-2 \cdot 9 \cdot 2 \sqrt{14}=137-36 \sqrt{14}$. Now, $(A-B)^{2}=(137-36)^{2}=(101)^{2}$, or 10201 .

5-3. 1967 The slope of the line is $\frac{2015-1995}{-2-3}=-4$. The point $(10, M)$ also lies on the line, so solve $\frac{M-1995}{10-3}=-4$ to obtain $M=1967$.

5-4. 22 2 Notice that $Q U^{2}+Q D^{2}=U A^{2}+A D^{2}$, which means that the square of the length of a diameter of circle O is $5^{2}+(3 \sqrt{7})^{2}=\sqrt{43}^{2}+(3 \sqrt{5})^{2}=88$, so the radius is $\frac{1}{2} \sqrt{88}=\sqrt{22}$. Thus, the area of the circle is $\mathbf{2 2 \pi}$.

5-5. (360,2) Solve to obtain $(x-3) \ln 2=\ln 45 \rightarrow x=3+\frac{\ln 45}{\ln 2}$. Combine the fractions to obtain $x=\frac{3 \ln 2}{\ln 2}+\frac{\ln 45}{\ln 2}=\frac{\ln 2^{3}}{\ln 2}+\frac{\ln 45}{\ln 2}$, or $\frac{\ln (45 \cdot 8)}{\ln 2}$. The ordered pair is $(\mathbf{3 6 0}, \mathbf{2})$.
5-6. $\frac{\sqrt{2}+\sqrt{6}}{\mathbf{2}}$ Note that $B G=B C=1$. Now, find $m \angle C B G$. The $m \angle G B A=90^{\circ}$ and $m \angle C B A=120^{\circ}$, so $m \angle C B G=360-90-120=150^{\circ}$. Thus,
$C G^{2}=1^{2}+1^{2}-2 \cdot 1 \cdot 1 \cdot \cos 150^{\circ}=2+\sqrt{3}$. But what are P, Q, and R ? Squaring $\frac{\sqrt{P}+\sqrt{Q}}{R}$ gives $\frac{P+Q+2 \sqrt{P Q}}{R^{2}}=2+\sqrt{3}$, so $P+Q=2 R^{2}$ and $2 \sqrt{P Q}=R^{2} \sqrt{3}$. Because $2 \sqrt{P Q}=R^{2} \sqrt{3}$, and because R is an integer, R^{2} is a multiple of 2 . So, try $R=2$. Then, $2 \sqrt{P Q}=4 \sqrt{3}$, so $P Q=$ 12. Also, $P+Q=8$, so $P=2$ and $Q=6$, and the length $C G=\frac{\sqrt{2}+\sqrt{6}}{\mathbf{2}}$.

R-1. Compute the least odd positive integer that is the product of four distinct prime numbers. R-1Sol. $\mathbf{1 1 5 5}$ Compute $3 \cdot 5 \cdot 7 \cdot 11=\mathbf{1 1 5 5}$.

R-2. Let N be the number you will receive. The quadratic equation $x^{2}-2 x=N$ has two roots. Compute the greater of the two roots.
R-2Sol. 35 Substituting, $x^{2}-2 x=1155 \rightarrow(x-35)(x+33)=0$, so the greater root is $x=\mathbf{3 5}$.

R-3. Let N be the number you will receive. In the sequence $41, N, \ldots$, the difference between any two consecutive terms is constant. Compute the sixth term in the sequence.
R-3Sol. 11 The common difference is $N-41$, so the first six terms are $41, N$, $N+(N-41)=2 N-41,2 N-41+(N-41)=3 N-82,3 N-82+(N-41)=4 N-123$, and $4 N-123+(N-41)=5 N-164$. Substituting, the sixth term is $5 \cdot 35-164=\mathbf{1 1}$.

R-4. Let N be the number you will receive. A right circular cylinder has a height of $N \mathrm{~cm}$. The surface area of the cylinder (including its top and its bottom) is 120π square cm . Compute the radius of the base of the cylinder in cm .
R-4Sol. 4 The surface area of a right circular cylinder is $2 \pi r h+2 \pi r^{2}$, so $2 \pi N r+2 \pi r^{2}=120 \pi$, which implies $N r+r^{2}=60$, which solves to give $r=\frac{-N+\sqrt{N^{2}+240}}{2}$. Substituting, $r=4$.

R-5. Let N be the number you will receive. Consider the set $S=\{k, 9,10,16,19, N\}$, where the elements of S are integers. The mean of the numbers in S is 2 more than the median number in S. Compute k.
R-5Sol. 32 Substituting, the set $S=\{k, 4,9,10,16,19\}$. If $k \leq 9$, then the median is 9.5 , which makes the mean 11.5, which means $k=11$, which is not less than or equal to 9 . If $9<k<10$, a similarly impossible result occurs. If $k=10$, then the median is 10 , so the mean must be 12 , which is impossible. If $10<k<16$, similarly impossible results occur. So $k \geq 16$, which makes the median 13 and the mean 15 , and $k=\mathbf{3 2}$.

